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ABSTRACT: Approximately seven years of daily initializations from the convection-allowing National Severe Storms

Laboratory Weather Research and Forecasting Model are used as inputs to train random forest (RF) machine learning

models to probabilistically predict instances of excessive rainfall. Unlike other hazards, excessive rainfall does not have an

accepted definition, so multiple definitions of excessive rainfall and flash flooding—including flash flood reports and 24-h

average recurrence intervals (ARIs)—are used to explore RF configuration forecast sensitivities. RF forecasts are analo-

gous to operational Weather Prediction Center (WPC) day-1 Excessive Rainfall Outlooks (EROs) and their resolution,

reliability, and skill are strongly influenced by rainfall definitions and how inputs are assembled for training. Models trained

with 1-yrARI exceedances defined by the Stage-IV (ST4) precipitation analysis performpoorly in the northernGreat Plains

and Southwest United States, in part due to a high bias in the number of training events in these regions. Increasing the ARI

threshold to 2 years or removing ST4 data from training, optimizing forecast skill geographically, and spatially averaging

meteorological inputs for training generally results in improved CONUS-wide RF forecast skill. Both EROs and RF

forecasts have seasonal skill—–poor forecasts in the late fall and winter and skillful forecasts in the summer and early fall.

However, the EROs are consistently and significantly better than their RF counterparts, regardless of RF configuration,

particularly in the summer months. The results suggest careful consideration should be made when developing ML-based

probabilistic precipitation forecasts with convection-allowing model inputs, and further development is necessary to con-

sider these forecast products for operational implementation.

SIGNIFICANCE STATEMENT: Machine learning (ML) models can deduce statistical relationships between a set of

predictors and meteorological events. In this work, ML models are developed to predict excessive rainfall events. Since

excessive rainfall is difficult to uniformly define across the United States, multipleMLmodels are built from a variety of

rainfall datasets with predictors gathered from output of a high-resolution numerical weather prediction model and

forecasts are made from each model. Forecasts made from these models are highly sensitive to both the definitions of

excessive rainfall (e.g., 100mm of rain in a day may cause flooding in a usually dry area, but not in a wet area) and the

predictors used. Forecast skill can increase when excessive rainfall events are rarer and when predictors synthesize the

surrounding environment rather than characterize specific geographical points. ML-based models have great potential

for excessive rainfall prediction, but careful attention to the configuration of these models is required.

KEYWORDS: Rainfall; Numerical weather prediction/forecasting; Operational forecasting; Machine learning; Decision

trees; Decision trees

1. Introduction

Flash flooding and excessive rainfall pose significant risks to

society, combining for over $60 billion (U.S. dollars) in damage

and 212 deaths in the United States from 2010 to 2019 (NCEI

2020), and contributing to significant increases in property dam-

age over the last two decades (Ahmadalipour and Moradkhani

2019). To provide timely forecasts that alert the general public to

the threat of excessive rainfall, the Weather Prediction Center

(WPC) issues excessive rainfall outlooks (EROs;NOAA/Weather

Prediction Center 2021) at approximately 0900 and 2100 UTC

daily that cover the 3–27-h (day 1), 27–51-h (day 2), and 51–75-h

(day 3) periods across the contiguous United States (CONUS).

Forecasting excessive rainfall and accompanying flooding events

operationally is made difficult by numerical weather prediction

(NWP) model guidance, which must accurately depict the loca-

tion, intensity, and duration of rainfall events along with accom-

panying environmental ingredients (e.g., Doswell et al. 1996;

Schumacher 2017), that often exhibit substantial quantitative

precipitation forecast (QPF) biases (Herman and Schumacher

2016). Whereas forecasters have a plethora of observational data

available to aid their day-1 EROs, day-2 and day-3 EROs are

primarily dependent on NWP model guidance and previously is-

sued outlooks (Novak et al. 2014; Erickson et al. 2021). Despite

recent enhancements to NWP models that have improved pre-

cipitation forecasts, including the reduction of horizontal grid

spacing to convection-allowing resolutions (e.g., Done et al. 2004;

Clark et al. 2007, 2009; Ikeda et al. 2013), the important processes

responsible for long- and short-duration precipitation events that

lead to flooding are still unresolvable in convection-allowing

NWP models (CAMs). CAMs are not immune to QPF biases

either (e.g., Romine et al. 2013; Herman and Schumacher 2016;

Wong et al. 2020), and recent work has suggested that NWP

model horizontal grid spacing must be reduced (to 1 km) to fur-

ther improve precipitation forecasts (Schwartz and Sobash 2019).

Post-processing methods applied to model output, including

machine learning (ML), have shown promise in producing

calibrated, probabilistic forecasts of extreme precipitationCorresponding author: Aaron J. Hill, aaron.hill@colostate.edu
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(e.g., Gagne et al. 2014; Scheuerer and Hamill 2015; Herman

and Schumacher 2018b; Whan and Schmeits 2018; Loken et al.

2019) and other convection-based hazards like tornadoes, hail,

and severe wind (e.g., Gagne et al. 2017; McGovern et al. 2017;

Burke et al. 2020; Hill et al. 2020; Loken et al. 2020; Sobash

et al. 2020; Flora et al. 2021). These postprocessing examples

have used NWP model forecasts as inputs to random forests

(RFs; Breiman 2001) and artificial neural networks to produce

both quantitative and probabilistic event-based forecasts of

weather hazards (e.g., Herman and Schumacher 2018b; Loken

et al. 2019). As an example, Herman and Schumacher (2018b)

leveraged theNationalOceanic andAtmosphericAdministration

(NOAA) Global Ensemble Forecast System Reforecast

(GEFS/R; Hamill et al. 2013) dataset to train RFs to probabi-

listically predict the occurrence of excessive rainfall events over

24-h periods analogous to day-2 and day-3 WPC EROs. Their

statistical model forecasts demonstrated improved skill over

raw probabilistic QPFs from global operational models and

have been successfully transitioned to operations at the WPC

(Schumacher et al. 2021) as ‘‘first-guess’’ guidance fields for op-

erational forecasters. Unfortunately, whereas the GEFS-driven

RF forecasts are more skillful than humans on days 2 and 3, they

are unable to routinely outperform the human WPC forecasters

on day 1 (Schumacher et al. 2021). This study seeks to advance

ML-based day-1 forecasts of excessive rainfall by exploring de-

terministic CAM-based RF models for extreme precipitation

forecasting and examining sensitivities of RF configurations in

order to determine their benefit to operational forecasters in

guiding their day-1EROs andwhere improvements can bemade

in the future to operationalize CAM-based RF products.

CAMs are a viable alternative to global models for ML-

based precipitation prediction because they offer higher

resolution spatiotemporal information, and they effectively

characterizeQPF climatologies (Herman and Schumacher 2016;

Goines and Kennedy 2018), which suggests they can more

accurately simulate environments supportive of excessive

rainfall compared to coarser global models. On the other hand,

the application of CAMs with ML comes with two primary

limitations: 1) CAMs have limited temporal range, often re-

stricted to less than 60 forecast hours due to computational

constraints; and 2) CAMs often undergo development up-

grades routinely, which alter their biases. The latter limitation

is important becauseMLmodels are effective at learning input

biases—e.g., high temperature bias during the daytime—when

the input biases remain static (Loken et al. 2019). These limi-

tations have likely hampered the development of CAM-based

MLmodels for hazard forecasting. A recently study conducted

by Loken et al. (2019) used high-resolution CAM ensemble

forecasts as inputs to RF models and forecast accumulated

precipitation over forecast hours 12–36, effectively calibrating

the CAMensembleQPFs. They showed that theRFs were able

to correct systemic biases in QPF, and the RF forecasts out-

performed the dynamic model QPF guidance.

However, the fixed threshold precipitation accumulation

used by Loken et al. (2019) may not sufficiently characterize

the threat of flash flooding locally, which can be heavily influ-

enced by topography, antecedent conditions (e.g., Brocca et al.

2008), land type and use (e.g., Ogden et al. 2000), and urban

impediments (e.g., Smith et al. 2005). Rainfall accumulations

are also hard to measure and observe in some locales, as radar

estimates are often relied on, which have inherent range biases

in complex terrain (Nelson et al. 2016) and sensitivities to at-

tenuation and mixed-phase precipitation regimes (Zhang et al.

2020). The difficulty in accurately observing rainfall events

feeds into proper ML-model training and verification proce-

dures as well (e.g., Schumacher et al. 2021). Schumacher et al.

(2021) used average recurrence intervals (ARIs) with RF

models and noted that regional excessive rainfall predictions

could be calibrated by using slightly different definitions of

excessive rainfall – unique to the forecast region—and different

quantitative precipitation estimation (QPE) datasets to define

ARI exceedances (e.g., Stage-IV), which have known regional

biases (Herman and Schumacher 2018a).

CAM-based RF models are explored in this work, utilizing

the experimental and nonoperational National Severe Storms

Laboratory Weather Research and Forecast (NSSL WRF)

model and locally varying climatologies of excessive rainfall

(i.e., ARIs). The NSSL WRF used in this work is a determin-

istic, 4-km horizontal grid spacing CAM that produces forecast

output over the CONUS with 36 h of lead time.1 The primary

advantage of the NSSL WRF, apart from the convection-

allowing resolution, is the nearly static configuration for over a

decade, which provides a long training dataset to develop ro-

bust ML models. The ML models and analysis methods are

discussed in section 2. Operational forecast skill is assessed in

section 3. ML-model forecast sensitivities to excessive rainfall

definitions and predictor assembly, along with an example

forecast, are presented in section 4. Concluding remarks and a

summary of the results is reserved for section 5.

2. Data and methods

In this work, RFs are trained to forecast excessive rainfall

as a binary event using different sets of features and labels.

An important consideration in this work is how to define

‘‘excessive,’’ as no widely accepted definition exists. The defini-

tion of a flood, flash flood, or extreme rainfall event varies con-

siderably across the CONUS (Gourley et al. 2013; Gourley and

Vergara 2021; Schumacher and Herman 2021), and NOAA

National Weather Service Weather Forecast Offices use dif-

ferent thresholds to determine when to issue flash flood

warnings, flood watches, as well as record local storm reports

(LSRs; Gourley et al. 2013; Marjerison et al. 2016). Flash flood

guidance (FFG; Sweeney 1992) is used as a proxy for flash

flooding to define the WPC ERO forecasts (NOAA/Weather

Prediction Center 2021), but the computed values of FFG can

produce sharp discontinuities across NWS River Forecast

Center boundaries (e.g., Clark et al. 2014). An alternative

proxy for excessive rainfall is frequency-based thresholds such

1An alternative NSSL WRF model runs out to 60 h with 3-km

horizontal grid spacing. However, that 3-km experimental model

was developed for comparison to other convection-allowing

models under development in late 2018, and thus, does not

have a long enough record desired for this study.
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as ARIs, which are used in this work, but specific ARIs and

accumulation periods that best correspond to flash flooding

vary regionally across the CONUS and across datasets

(Herman and Schumacher 2018a; Gourley and Vergara 2021;

Schumacher and Herman 2021). These considerations and the

lack of a formal definition motivate the use of more than one

dataset to define excessive rainfall.

Excessive rainfall events in this work are encoded using a

combination of up-to three datasets: 1) flash flood reports

(FFRs), 2) NCEP Stage-IV precipitation analysis over a 24-h

accumulation period (ST4; Nelson et al. 2016), and 3) 24-h

climatology calibrated precipitation accumulation (CCPA;

Hou et al. 2014). ST4 QPE analyses are generated from rain

gauge observations and radar-derived rainfall estimates,

whereas CCPA QPE fields are derived from ST4 QPE and the

Climate Prediction Center’s (CPC) unified global daily gauge

analysis. Effectively, the CCPA dataset represents a gauge-

corrected ST4 QPE; the CPC-based analysis is generally con-

sidered more accurate due to more rigorous quality control.

Differences between the two QPE datasets are covered ex-

tensively by Herman and Schumacher (2018a). ST4 and CCPA

QPE accumulation grids are used to define instances of 1- and

2-yr 24-h ARI exceedances. The specific dataset combinations

used in training for sensitivity experiments are discussed in

section 2b. The trained RF models produce probabilistic

forecasts analogous to day-1 WPC ERO outlooks, that is, the

probability of an excessive rainfall event within 40 km of a

point over the 24-h 1200–1200 UTC period. WPC EROs are

compared to RF forecasts over the same verification period

(discussed in section 2a), and all discussion of EROs is re-

stricted to the day-1 products.

a. Random forests

RFs constructed herein are made up of decision trees that

individually make unique classification predictions (e.g., 0 or 1)

of a particular event based on features (i.e., inputs) to the tree.

Trees are trained by considering a historical set of labels (e.g.,

rainfall events) and corresponding features, and each tree

considers a random subsample of training examples to generate

unique trees. Beginning with the root node of a tree, branches

are traversed based on the outcomes of criteria specified at each

node. A random subset of features is evaluated at each node to

select a criterion that minimizes node impurity for all remaining

training examples. In other words, subsequent nodes in the tree,

ideally, become more pure and aligned with a specific classifi-

cation label (e.g., flood or no flood). Once the subset of events

in a node becomes pure or is no longer large enough to split, a

‘‘leaf’’ node is produced, which makes a declaration of the event

classification. To make a forecast, new inputs—e.g., from real-

time NWP model output—are supplied to the tree, and the tree

is traversed to a leaf node. All decision-tree predictions are then

aggregated to produce a probabilistic forecast of excessive

rainfall based on the inputs provided.

To build robust statistical models in this excessive rainfall

context, it is important to employ a long training period with a

nearly static NWPmodel for inputs. ML models are capable at

learning robust statistical relationships when input biases re-

main consistent, and it is typical for CAMs to receive regular

upgrades every year or two, which may alter their forecast bia-

ses. Therefore, inputs are gathered from the 4-km grid spacing

National Severe Storms Laboratory (NSSL) Weather Research

and Forecasting (WRF) Model (Skamarock et al. 2008) CAM

(NSSL WRF), which has remained nearly static since 2009.

Example meteorological input variables include accumulated

precipitation, convective available potential energy, precipitable

water, and 2-m temperature (see Table 1 for a list of all variables

included), which are presumed to havemeaningful relationships

with precipitation that can be deduced by the random forests.

Inputs are assembled in a forecast-point perspective by

gathering all p variables from a radius of n nearby NSSLWRF

grid points in both the longitudinal and latitudinal directions

(e.g., Herman and Schumacher 2018b; Hill et al. 2020); vari-

ables are spaced by 48 km (12 grid points) and up to 240 km

from the forecast point (n5 5). Temporally, inputs are selected

every three hours over 1200 to 1200 UTC (forecast hours 12–

36) from the 0000 UTC initialized NSSL WRF forecast, cor-

responding to the forecast period of interest. The number of

predictors per training label can be expressed mathematically

asN5 pt(2n1 1)2, where t is the number of forecast times (t5
9 in this work). The prescribed feature assembly amounts to

1089 predictors per variable p, and N 5 15 246 predictors per

training example. Additionally, static inputs related to the

climatological 1- and 10-yr ARIs near a forecast point are in-

cluded, along with latitude, longitude, day, and a seasonality

estimate; these static predictors are identical to those described

by Herman and Schumacher (2018b). The predictor assembly

process is fundamentally the same as that used by Herman and

Schumacher (2018b) and Hill et al. (2020), is motivated by a

number of sensitivity tests conducted byHerman andSchumacher

(2018b), and is particularly useful for capturing any spatiotem-

poral biases in the underlying NWP model used for predictors.

Furthermore, the spatiotemporal predictor assembly (e.g., n5 5)

was chosen to closely match that of models developed by

Schumacher et al. (2021) for subjective comparisons. It is also

important to note that training points (i.e., labels) are defined

on a coarser, half-degree grid, such that predictors are gathered

TABLE 1. Meteorological predictors input to the RFmodels during

training and forecasting.

Symbol Variable description

APCP 3-hourly accumulated precipitation

CAPE Convective available potential energy

CIN Convective inhibition

PWAT Precipitable water

MSLP Mean sea level pressure

U10 10-m latitudinal horizontal wind speed

V10 10-m longitudinal horizontal wind speed

T2M 2-m temperature

Q2M 2-m specific humidity

UPHL 2–5-km updraft helicity

Z500 500-hPa geopotential height

U6000 0–6-km average latitudinal horizontal

wind speed

V6000 0–6-km average longitudinal horizontal

wind speed

W3000 0–3-km average vertical wind speed
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relative to the closest NSSL WRF grid point; this coarsening is

necessitated by computational constraints.

RFs are trained with excessive rainfall labels and CAM-

based features over an approximately 7-yr training period from

9 June 2009 to 31 August 2016 using daily initializations of the

NSSL WRF for inputs (2290 days in total); occasional days

within this period are omitted from training as NSSL WRF

data were not available. Regionally varying climatologies of

excessive rainfall suggest that the RFs should be trained sep-

arately across the CONUS (Fig. 1). Only one RF configuration

parameter (i.e., minimum number of examples required to

split a node) was varied across each regionally trained model

(Table 2); the number of decision trees was set to 1000, the

maximumnumber of predictors evaluated at each nodewas the
ffiffiffiffi

N
p

, and entropy was used as the splitting criterion. The values

prescribed to each parameter were largely determined from

priorwork (e.g., Herman and Schumacher 2018b) and subjective

comparisons, and no formal tuning procedure was applied. For

the purposes of thiswork, the staticRFparameters should not be

seen as a detriment as the focus is on how to employ CAMs with

ML models to forecast excessive rainfall in a way that would be

useful for operational forecasters. Practically, a validation

and testing procedure would involve tuning each RF against

the training dataset, which is not used for verification pur-

poses. Additional tests (not shown) verify that optimally

tuning the RF parameters had negligible impact on forecast

skill. Each of the parameters is passed to the Python Scikit-

learn RandomForestClassifier package (Pedregosa et al. 2011)

to train the RFs. As a result of the regionalization, forecasts

generated from the regional RFs are stitched together using a

sigmoid function to reduce discontinuities between regional

boundaries. A 2-yr evaluation period from 1 January 2017 to

31 December 2018 is used to assess model forecast performance

and compute aggregate skill statistics, discussed in section 2c.

b. Sensitivity experiments

Because excessive rainfall is poorly defined as discussed

above, several experiments are designed to test the sensitivity

of RF performance to different definitions of excessive rainfall.

Four combinations of excessive rainfall datasets are used to

train RFs in each geographic region: 1) FFR and 1-yr ARI

exceedances from either CCPA or ST4 (FCS1); 2) FFR and

1-yr ARI exceedances from only CCPA (FC1); 3) FFR and 2-yr

ARI exceedances from either CCPA or ST4 (FCS2); and 4)

FFR and 2-yr ARI exceedances from only CCPA (FC2).

Previous work has suggested ST4 has substantial biases in the

U.S. Southwest, which helps motivate the construction of these

four datasets (Schumacher et al. 2021). Forecasts generated

from each regional model can then be stitched together across

the CONUS and evaluated against the corresponding WPC

ERO and an independent verification dataset (described in the

following section); hereafter, model forecasts generated from

these models are referenced by their labels (e.g., FCS1-trained

model forecasts). The first set of model forecasts use consistent

label definitions across all regions, e.g., FCS1 for all eight re-

gions. The second forecast system (OPT) considers the regional

skill of each separately trained RF, and the RFs that maximize

regional skill contribute to a CONUS-wide forecast. In other

words, OPT forecasts are made from regionally skillful RFs.

The previously discussed RF forecast systems specifically

use raw grid points as predictors as described in section 2a

(hereafter denoted as RAW). Previous work has demonstrated

skillful ML forecasts by using spatially averaged meteorolog-

ical predictors (e.g., Loken et al. 2020; Sobash et al. 2020). To

explore an optimal procedure for gathering predictors from

CAM-based output, a third forecast system (OPT_AVG)

spatially averages the (2n 1 1)2 predictors for each p variable

and time t (N5 pt); hereafter, thesemodel forecasts are referred

to as SPT-predictor forecasts. The same iterative regional skill

optimization procedure is conducted with OPT_AVG, i.e.,

forecast skill is computed for the four separately trained models

(FCS1, FC1, FCS2, and FC2 with SPT predictors) and the most

skillful regionalmodels are retained for CONUS-wide forecasts.

The regional label datasets used by OPT and OPT_AVG are

presented in Table 3. Because the trained RFs use the same,

static hyperparameters, it is reasonably assured that any sensi-

tivities in forecasts and skill will be due to training differences in

either the label datasets or predictor assemblies.

c. Analysis metrics

An independent dataset of excessive rainfall occurrence is

used to evaluate both ERO and RF-based forecast skill to

FIG. 1. Geographical regions over whichRFmodels are trained and

forecasts are issued.

TABLE 2. RF regional model configuration parameters: number

of decision trees is set to 1000, entropy is the splitting criterion, and

maximum number of features at a node is set to
ffiffiffiffi

N
p

.

Region Min No. of samples

PCST 16

SW 30

ROCK 30

NGP 120

SGP 120

MDWST 120

SE 120

NE 120
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avoid favorably skewed results when verifying RF-based fore-

casts with the same dataset used to train the models. The WPC

has developed the Unified Flood Verification System (UFVS;

Erickson et al. 2019, 2021) to combat excessive rainfall reporting

deficiencies from individual sources; the UFVS comprises flash

flood reports, flooding reports from United States Geological

Survey (USGS) stream gauges, and exceedances of the 5-yr ARI

or FFG all valid within the 1200–1200 UTC period. The UFVS

was not used to train RF models because it has a limited record,

only dating back to 2016. A 40-km radius is applied around each

observed event to match the neighborhood specified by the

ERO and RF forecast products. The UFVS dataset is used to

compute daily forecast skill through the Brier score (BS) as well

as aggregate Brier skill score (BSS) statistics. UFVS observa-

tions are aggregated and then spatially smoothed over 1October

2016–30 September 2020 to quantify the climatological occur-

rence of excessive rainfall across the CONUS (Fig. 2a) in order

to calculate BSSs. The smoothing procedure is similar to that

used by Schumacher et al. (2021) andKrocak and Brooks (2018)

for severe reports (e.g., tornadoes, hail, and wind).

To appropriately compare the discrete WPC ERO probabil-

ities and continuous RF forecast distribution, the RF-based

probabilities are discretized to match the probability bins of the

EROs. The EROs have categorical definitions corresponding to

5%–10% (marginal), 10%–20% (slight), 20%–50% (moderate),

and .50% (high) probability bins. RF-based probabilities

within these bins are mapped to the bin midpoints (7.5%, 15%,

35%, and 75%, respectively) to calculate skill scores; similarly,

the WPC EROs are remapped to the midpoint probability

values for quantitative skill comparisons. However, the full RF

forecast distribution is used to construct reliability diagrams and

formally evaluate RF forecast reliability and resolution against

the UFVS observations. Forecast resolution is assessed via area

under the relative operating characteristic curve (AuROC),

which characterizes how well a forecast system discriminates

between events and nonevents. Spatial reliability is also con-

sidered separately fromBSSs by computing the area coverage of

UFVS events in specific probability contours that correspond

with the ERO categories (e.g., Erickson et al. 2019; Hill et al.

2020; Erickson et al. 2021; Schumacher et al. 2021).

3. Operational forecasting skill

The climatological observed frequency of excessive rainfall

events from the UFVS (Fig. 2a) illustrates routine areas that

experience excessive rainfall, including the southern Great

Plains, southeast United States, and mid-Atlantic region. The

Cascade mountain range in western Washington, the Sierra

Mountains in California, and more generally the Rocky

Mountains in Montana, Wyoming, Colorado, and NewMexico

also experience frequent excessive rainfall. Notably, across the

Pacific Northwest, four corners region of Utah, Colorado,

Arizona, andNewMexico, and to some extent theGreat Lakes

region and upper northeast United States, excessive rainfall

events are less common. Generally speaking, excessive rainfall

during the verification period closely matches that of clima-

tology (cf. Figs. 2a,b) with localized maxima due to a shorter

period of record.

Operational ERO forecasts are issued by the WPC three

times daily (0100, 0900, and 1600 UTC). Only the 0900 UTC

issued forecasts are valid 1200–1200 UTC the following day,

consistent with the RF-issued forecasts; therefore, for the

purposes of this work, the 0900 UTC ERO forecast skill will be

assessed. East of the Rocky Mountains, the WPC EROs ex-

hibit considerable skill (i.e., BSS . 0), with a broad swath of

positive BSSs overlapping climatological events extending

from southernTexas tonorthernWisconsin (Fig. 2c). Statistically

significant skill is also present across the eastern Carolinas,

southern Georgia, and the coast of California. Due to a limited

verification period, poor skill (i.e., BSS , 0) exists in small, lo-

calized pockets (e.g., Florida peninsula), which are likely due to

one or a few intense rainfall events that were missed by EROs

and generated a number of excessive rainfall observations. The

WPC EROs exhibit little to no skill across the western CONUS

and Pacific Northwest, where few excessive rainfall events occur

in the UFVS observations but forecasts were issued.

The WPC EROs feature up to four distinct categorical risk

thresholds: marginal, slight, moderate, and high. Marginal

contours were issued most frequently across the Appalachian

mountains during the verification period (Fig. 3a), with nearly

15% of days featuring a probability contour in some locales.

Slight categorical outlooks were issued far less frequently

along the spine of the Appalachians (Fig. 3b), which generally

also coincides with only slightly positive BSSs (Fig. 2c), indi-

cating potentially low-predictability events or a lack of obser-

vations to verify the outlooks. In contrast, slight outlooks were

issued frequently along the eastern slopes of the Appalachian

range (Fig. 3b) coinciding with improved skill. Slight and

moderate forecasts were issued most frequently across central

Arkansas during this period as well (Figs. 3b,c), which coin-

cides with high skill scores and a swath of observed events in

central Arkansas (Fig. 2b). Qualitatively, the frequency of

marginal and slight risk contours tends to map favorably to the

WPC ERO skill scores, particularly from the Gulf Coast

northward and northeastward.

The substantial skill of WPC EROs along the California

coast is also accentuated within categorical risk frequencies,

with a ribbon of marginal and slight risk contours being issued

right along the coast line and Sierra Nevada mountain range

(Figs. 3a,b). Limited climatological events in this area would

suggest that EROs are being issued sparingly, corresponding to

when rainfall events have occurred. Moderate risks issued west

of the Great Plains are primarily reserved for mountain ranges

TABLE 3. Label datasets used in each region of the OPT and

OPT_AVG models.

Region OPT OPT_AVG

PCST FC2 FC2

ROCK FCS2 FC2

SW FC2 FC2

NGP FC1 FC1

SGP FC1 FC1

MDWST FC1 FC1

SE FCS1 FCS1

NE FCS1 FC2
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in California and Arizona (Fig. 3c). There are noticeable hot

spots of marginal and slight risk contours in New Mexico

and Arizona, coincident with the U.S. monsoon region and

mountainous terrain (Figs. 3a,b). However, observed events in

this area are quite scattered (Fig. 2b), which necessarily de-

grades ERO skill (Fig. 2c) in localized areas. Coincident with

the low climatological frequency of excessive rainfall events

across the Pacific Northwest and western Rocky Mountains,

few ERO contours of any magnitude are issued in the area

(Fig. 3). ERO skill and categorical forecast frequencies high-

light the skill of operational forecasters and provide a baseline

for RF-based products in order to be operationally useful.

4. Results of sensitivity experiments

First, the frequency of events within FCS1, FCS2, FC1, and

FC2 training datasets are examined. Both FCS1 and FCS2

feature numerous events within the Southwest (SW) region

(Figs. 4a,b), which extend north and northwestward along the

Rockies in FCS1 (Fig. 4a). The increased ARI threshold (i.e.,

changing to 2 years) in FCS2 results in substantially fewer

rainfall events across the Great Plains and upper Rockies,

and maintains a relative maximum across the mid-Atlantic

(Fig. 4b). Similarities between FCS1 and FC1 within the in-

termountain west and Pacific Northwest suggest the higher

frequencies of excessive rainfall in this region—compared to

FCS2 and FC2—are the result of the 1-yr ARI exceedances

from the CCPA. Additionally, comparing FCS1 with FC1

(cf. Figs. 4a,c), as well as FCS2 with FC2 (cf. Figs. 4b,d), it is ev-

ident that the high frequency of observations in the SW region

is directly attributable to the ST4 dataset. The regional bias in

New Mexico was similarly noted by Herman and Schumacher

(2018a), and it was attributed to poor QPE estimation by

ST4 in complex terrain. FC2 features the fewest number of

FIG. 2. (a) Fraction of days with excessive rainfall in the UFVS from 1 Oct 2016 to 30 Sep

2020. Frequencies have been spatially smoothed as discussed in the text. (b) Fraction of days

with excessive rainfall in theUFVSover the 2017–18 verification period. (c) BSS ofWPCEROs

over the 2017–18 verification period. Stippling represents statistical significance at the 95%

level obtained through bootstrap resampling of the approximately 2-yr forecast distribution

200 times. The value in the bottom-right corner of (c) is the CONUS-wide aggregate BSS.
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excessive rainfall events (Fig. 4d) due to removing ST4 and

increasing the ARI threshold. The overall lower frequency of

excessive rainfall events in FC1 and FC2 is partially attribut-

able to the CCPA dataset, which can mute event frequencies

through its linear calibration (Hou et al. 2014; Herman and

Schumacher 2018a).

a. Model performance and forecast skill

BSs are calculated from daily forecasts made by the FCS1-,

FCS2-, FC1-, and FC2-trained RAW models, which are then

incorporated with climatological BSs to compute BSSs across

the CONUS (Fig. 5). As mentioned previously, regional RF

forecasts are stitched together from models trained with the

same label dataset. Across all four systems, skill is worst across

the western CONUS (Fig. 5), coinciding with the fewest ex-

cessive rainfall events (Figs. 2a, 4); the models do not learn

critical statistical relationships when event sample sizes are

small. BSSs are largely negative across the western CONUS,

indicating RF-based forecasts are worse than a climatological

forecast.

Regional skill differences across the forecasts are note-

worthy along and east of the Rockies. FCS1-trained model

forecasts perform statistically worse than climatology (i.e.,

skill is negative with 95% confidence based on bootstrap

resampling) in the upper Great Plains (Fig. 5a), and fore-

cast skill in this region substantially improves when ST4

labels are removed (Fig. 5c) and the ARI threshold is in-

creased (Figs. 5b,d). This result indicates a potential high

bias in the ST4 ARI exceedances and/or a better corre-

spondence between longer recurrence intervals and the

UFVS observations. Along the Rockies, where the ST4

dataset contributed to a higher frequency of training examples,

FIG. 3. Fraction of days within the verification period that featured at least a (a) marginal-,

(b) slight-, and (c) moderate-risk categorical contour within the WPC EROs.
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the FCS1- and FCS2-trained model forecasts have positive

skill (Figs. 5a,b); skill decreases whenmodels are not trained

with ST4 (Figs. 5c,d). Because the UFVS includes ST4 5-yr

ARI exceedances, it is plausible the positive skill seen in the

complex terrain is artificial, given known ST4 QPE biases in

these regions (e.g., Herman and Schumacher 2018a). Elsewhere,

all forecasts exhibit positive skill across the southern Great

Plains (SGP), Midwest (MDWST), Southeast (SE), and

Northeast (NE) regions that is generally statistically sig-

nificant; three exceptions include consistent areas of negative

skill in western Texas, southern Michigan, and the Northern

Great Plains.

BSSs are also calculated in a CONUS-wide perspective, i.e.,

aggregating all daily BSs from each grid point, which may al-

leviate some of the regional biases in ST4 or CCPA datasets

(Herman and Schumacher 2018a). Removing ST4 1-yr ARI

events from model training (FC1) increases forecast BSS from

0.014 to 0.036. Alternatively, increasing the ARI threshold to

2 years and retaining ST4 in training (FCS2) increases the

CONUS-wide BSS to 0.033. Qualitatively, the FC2-trained

FIG. 4. Fraction of days with excessive rainfall events as defined by (a) FCS1, (b) FCS2, (c) FC1, and (d) FC2 datasets over the training

period.

FIG. 5. BSS of RF-based model forecasts trained with (a) FCS1, (b) FCS2, (c) FC1, and (d) FC2 label datasets. Stippling represents

statistical significance at the 95% level obtained through bootstrap resampling of the 2-yr forecast distribution 200 times. The value in the

bottom-left corner of each panel is the CONUS-wide aggregate BSS of each model.
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model clearly increases skill across the western regions [Pacific

Coast (PCST), Rockies (ROCK), and SW], but also exhibits

marginally poorer skill (but still positive) across the central and

eastern United States; CONUS-wide BSS only increases to

0.026 from the baseline of 0.014. The CCPA dataset is known

to curtail extreme events through the linear regression cali-

bration procedure (Hou et al. 2014; Herman and Schumacher

2018a), which may reduce correspondence between FC2 ob-

servations and the UFVS resulting in less effective model

training and poorer forecast skill. Spatially and qualitatively,

the distribution of positive and negative skill is consistent with

that of the EROs; less skill in the western United States and

mostly positive skill across the central and eastern United

States. However, ERO skill is still superior to the RF forecasts,

qualitatively and in a CONUS-wide sense (0.085 BSS).

Regionally, EROs have mostly positive skill, with excep-

tions in PCST and ROCK; skill in SGP, MDWST, NE, and SE

are markedly better than other regions (Fig. 6). RF-based

forecasts have negative skill in the PCST, ROCK, and SW

regions for all configurations, and negative skill in the NGP

when trained with FCS1, consistent with the spatial BSSs as-

sessed previously (Fig. 5a). In all geographic regions east of the

Rockies, the best performing RF-based forecast system for a

particular region has worse skill than the corresponding ERO.

The FC2-trained RF model produces better forecasts than the

EROs in PCST, whereas the FCS2-trained model has better

skill in ROCK compared to the EROs. However, neither re-

gional forecast is better than climatology in this instance.

Interestingly, different label datasets favor specific geograph-

ical areas. For instance, FCS1-trained models have the best NE

and SE regional forecast skill, FC1-trained models deliver the

best northern Great Plains (NGP), SGP, and MDWST re-

gional forecasts, consistent with results from Schumacher et al.

(2021). Weaker connections exist in the west, where the best

regional forecast in the PCST and SW regions comes from

training with FC2, and the ROCK region benefits from in-

creasing the ARI threshold but retaining ST4 in the FCS2

dataset. These results confirm the regional preferences of QPE

datasets as discussed by Herman and Schumacher (2018a).

Regional forecast skill—in particular, areas of significant

negative skill—can be partially attributed to the frequency of

forecast issuance. The FCS1, FCS2, and FC1 RFs issue mar-

ginal categorical forecasts more frequently within the ROCK,

SW, SGP, NGP, and MDWST regions compared to the EROs

(cf. Figs. 7a,d,g and 3a). As a result, forecasts regionally are

significantly worse (Fig. 6). Conversely, WPC EROs are issued

more frequently than all RF forecasts in each outlook category

across the SE (cf. Figs. 7 and 3), resulting in a BSS . 0.1 com-

pared to the best RF-based BSS of,0.05 (Fig. 6). The statistical

relationships learned by all NSSLWRF-based models in the SE

do not sufficiently characterize the excessive rainfall threat in

this region. These relatively high forecast frequencies are also

prominent in the slight category for the FCS1, FCS2, and FC1-

trained models (Figs. 7b,e,h) across the SW, NGP, and SGP

regions; the far-too-frequent forecast issuance reduces skill.

Spatial forecast improvements discussed previously can also

be viewed through the forecast fraction lens, i.e., removing ST4

or increasing the ARI threshold significantly reduces forecast

issuance in the problematic ROCK and SW regions (e.g., cf.

Figs. 7b,e), which is reflected in improved spatial BSSs (Fig. 5).

In other words, the high frequency of forecasts at lower proba-

bility thresholds (e.g.,marginal and slight categories) contributes

to poorer forecast skill, likely because low-probability forecasts

are being issued when no observations exist (not shown). At the

higher categorical thresholds (e.g., moderate), forecasts are is-

sued far less often (Figs. 7c,f,i,l) across all configurations, which

subjectively compares well with the ERO forecast fractions

(Fig. 3c); one caveat exists related to the FCS1-trained RF

model, which issues a relative maximum across the SW region

due to training on a large number of excessive rainfall events in

New Mexico.

An additional aspect of the forecasts that is critical to eval-

uate is resolution, i.e., the ability of the forecasts to discrimi-

nate excessive rainfall events from nonevents. Regionally,

forecast resolutionsmeasured through the area under theROC

curve are comparable to ERO regional resolution for the

various RF configurations (Fig. 8). For all regions, the highest

forecast resolution arises from the FCS1-trained models

(Fig. 8), likely due to the frequent issuance of probabilities that

try to capture low-probability, complex terrain events, partic-

ularly in the Intermountain West. Additionally, the regional

forecast resolutions from FCS1-trained models outperform the

EROs, except in the SE region; this result coalesces with the

lack of RF-based forecasts in the SE region (Fig. 7). Furthermore,

all RF-based forecasts have better resolution than the ERO

in PCST. Whereas the FCS1-model forecasts subjectively

have the best resolution, FC2-model forecasts have fairly poor

resolution, which is opposite of forecast skill (e.g., Fig. 5).

The average coverage of observations within categorical

forecast outlooks is also considered, in order to measure how

often probabilistic outlooks and forecasts are accurately con-

veying the spatial coverage of excessive rainfall (Fig. 9). For

instance, a categorical slight risk conveys a 5%–10% risk of

excessive rainfall within 40 km of a point, and therefore it is

expected that each slight risk probabilistic contour has on

FIG. 6. Regional BSSs for WPC EROs and forecasts generated

from RF-based models trained with different labels. Bar hatching

and bolded edges depicts the BSS and corresponding label dataset

that maximizes each region.
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average a 5%–10% spatial overlap with observations (outlook

area coverage lies between green and red lines in Fig. 9).

Generally, EROs are too small regionally for each categorical

outlook (above respective red lines in Fig. 9), which Erickson

et al. (2021) and Schumacher et al. (2021) similarly showed.

RF-based forecasts tend to be spatially calibrated when trained

with FC1 and FCS2 for all outlooks (Fig. 9), and tend to be

too large (below green lines in Fig. 9) when trained with FCS1

for the slight category (Fig. 9a). The FC2-trained models are

oftentimes too small at the marginal and slight thresholds

(Figs. 9a,b) and become better calibrated for the moderate

categorical threshold (Fig. 9c), although some regions never

experienced this probabilistic threshold during the verifica-

tion period. RF-based forecasts in SE are nearly always too

small when issued, which agrees with the lack of forecasts

in this region (Fig. 7). Within each categorical outlook, the

percent of outlook area covered by observations tends to

increase as ARI thresholds increase and ST4 observations

are withheld from model training, corresponding to forecast

areas decreasing in size. This effect results in improved ob-

servation coverage when probability coverage is initially too

large (below green lines), but poorer observation coverage

(above red lines) when forecast areas initially are too small

(e.g., SE region).

b. Regional optimization and predictor sensitivities

To further evaluate the sensitivities of CAM-based RF

forecasts of excessive rainfall and their operational usefulness,

two additional forecasts are generated as outlined in section 2.

First, regional models maximizing BSS (hatched bars in Fig. 6)

are used to generate forecasts across the CONUS (OPT fore-

casts), ideally maximizing regional forecast skill and resulting

in improved CONUS-wide forecasts. Second, the same re-

gional optimization procedure is conducted with the four label

datasets but using SPT predictors (OPT_AVG forecasts). The

skill of these forecasts is compared to EROs as well as the other

RF-based forecasts.

The spatial skill patterns of OPT and OPT_AVG forecasts

are qualitatively similar to both the ERO and other RF fore-

casts, i.e., negative skill to the west and positive skill east of the

Rocky Mountains (Fig. 10). However, using skillful regional

models to generate CONUS-wide forecasts results in improved

CONUS BSS, rising from a maximum 0.036 in the FC1-trained

RAW model (Fig. 5c) to 0.042 in OPT (Fig. 10a) and 0.052 in

FIG. 7. Fraction of days within the verification period that featured at least a (left) marginal, (center) slight, and (right) moderate risk

contour within RF-based forecasts generated by models trained with (a)–(c) FCS1, (d)–(f) FCS2, (g)–(i) FC1, and (j)–(l) FC2 label

datasets. (m)–(o) Replicated from Fig. 3 for reference.

1702 WEATHER AND FORECAST ING VOLUME 36

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/23 08:38 PM UTC



OPT_AVG (Fig. 10b). Whereas the spatial patterns between

OPT and OPT_AVG are remarkably consistent, localized

improvements in skill are responsible for the CONUS-wide

BSS increase (0.042 to 0.052), including improved skill in

Colorado, New Mexico, central Wyoming, and the mid-Atlantic

region. Forecast degradation also exists—for instance, in West

Texas—but it is often balanced in magnitude with an increase

in skill—for example, in central and southern Texas. Overall,

CONUS-wide skill from CAM-based RFs is improved when

maximizing regional skill as well as simplifying predictors, but

WPC skill for day-1 forecasts is still unmatched.

OPT and OPT_AVG forecasts defined by the categorical

outlooks are qualitatively more aligned with the EROs, but

they still exhibit high-frequency biases in large portions of the

CONUS (Fig. 11). OPT marginal forecasts in ROCK are more

frequent than the EROs, which correspond to better skill

(cf. Figs. 11a and 3a). Across the southeastern United States,

marginal-risk EROs are issued frequently across the Gulf

Coast where there is a relative forecast frequency minimum in

both the OPT and OPT_AVG forecasts (Figs. 11a,b). OPT_

AVG marginal-risk forecasts are issued less frequently in

ROCK and more frequently in the SW region, resulting in

regionally degraded and improved skill, respectively. Given

the robust positive ERO skill (Fig. 2c), it appears the marginal

RF forecasts are issued too frequently. Moderate-risk fore-

casts are issued far less frequently, but an obvious maximum

across Virginia, Maryland, and New Jersey (Fig. 11c) is not

replicated by the EROs (Fig. 3c). Additionally, OPT_AVG

has slightly improved skill relative to OPT in the SGP and

NGP regions, partially attributed to increased slight-risk

forecast frequencies (Fig. 11d), and a handful of moderate-

risk forecasts (Fig. 11f).

OPT and OPT_AVG are better calibrated spatially than the

EROs formarginal, slight, andmoderate risk categories; EROs

are on average too small (Fig. 12). The overall reliability of

OPT and OPT_AVG suggests an underforecasting bias com-

pared to observations above the 10% probability threshold

(Fig. 13a). When comparing OPT and OPT_AVG to the other

RAW predictor RF models (Fig. 13a), FC1 and FCS2-trained

models have similar reliability, while FC2-trained models un-

derforecast more severely and FCS1-based forecasts slightly

overforecast events across all probability thresholds. When

replacing RAW predictors with SPT predictors in model

FIG. 9. As in Fig. 6, but fractional coverage of observations for

the (a) marginal, (b) slight, and (c) moderate probability categories

present in RF-based forecasts and WPC EROs. Green horizontal

lines depict the lower bound of each probability bin; red horizontal

lines depict the upper bound.

FIG. 8. As in Fig. 6, but for area under the ROC curve for each

region and forecast system.
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training, forecasts are issuedmore often (Fig. 13b).Models that

were underforecasting events now move closer to perfect re-

liability (black dashed line in Fig. 13b), while the SPT-based

model trained with FCS1 overforecasts excessive rainfall even

more (brown line in Fig. 13b). The overall adjustment to more

reliable forecasts when moving from RAW to SPT predictors

explains why OPT_AVG is slightly more reliable than OPT,

which directly translates into improved spatial BSSs.

Forecast resolution is also improved by using SPT predictors

(Fig. 14). EROs exhibit an AuROC of 0.8 across the CONUS

(Fig. 14a), whereas the best performing RAW model has an

AuROC of 0.81 (FCS1-trained). All SPT-based models have

improved resolutions over their RAW-based counterparts, and

the best SPT model has an AuROC of 0.84. However, a drop

in resolution for the other SPT-based models—0.81, 0.8, and

0.75 AuROC for the FC1, FCS2, and FC2-trained models,

respectively—suggests that as the models progressively un-

derforecast observed events (Fig. 13b) and get smaller (e.g.,

Fig. 9), forecasts are less able to discriminate excessive rainfall

events from nonevents. The resolution improvements also

manifest between OPT and OPT_AVG, which have 0.78 and

0.81 AuROC, respectively (Fig. 14).

Finally, the BSSs for each trained model (all RAW and SPT

models) and the EROs are disaggregated monthly to consider

any seasonal performance biases across the forecasts (Fig. 15).

The monthly ERO BSSs are compared against RAW- and

SPT-based models for each label dataset (Figs. 15a–d), as well

as OPT (Fig. 15e) and OPT_AVG (Fig. 15f). A statistical sig-

nificance test is applied using bootstrapping to determine

whether BSSs between the forecasts are significantly different.

EROs have lower relative skill in the Northern Hemisphere

fall and winter months, and increased skill in the summer and

early fall months (green lines in all panels of Fig. 15). Notably,

ERO skill is only significantly better than the RFs during the

summer and early fall months. The monthly ERO skill follows

closely with that of the climatology of extreme precipitation

across the CONUS (Stevenson and Schumacher 2014), and

others have noted the positive skill of WPC QPFs for land-

falling cyclones (e.g., Sukovich et al. 2014), which could par-

tially contribute to increased skill during this time period. The

RF-based forecasts follow a similar monthly skill pattern to the

EROs, but raw skill (i.e., not considering significance testing) is

always worse. RF-based skill, no matter the predictor set or

label dataset used, is significantly worse than climatology in

the late fall, winter, and early spring months (Figs. 15a–d).

RF-based forecast skill improves into the summer months, but

it is rarely distinguishable from climatological skill, and it is

often statistically worse than the ERO skill between June and

October. The least skillful RF-based forecast is generated from

the FCS1 labels (Fig. 15a), and slight improvements in skill are

observed over the summer months when SPT predictors are

used in the FC1 and FC2 models (Figs. 15c–d). Compared to

monthly ERO skill, the best forecast model is OPT_AVG,

which is only statistically worse than ERO forecasts three

months out of the year (Fig. 15f).

c. Forecast example and subjective evaluations

To provide event-based context for the results discussed

herein, an ERO outlook and RF-based forecasts are presented

from a high-impact flooding event in the Southeast United

States (Fig. 16). The WPC issued a moderate risk of excessive

rainfall at 0801 UTC 12 April 2020 spanning a narrow region

extending from northern Mississippi to eastern Tennessee and

western North Carolina (Fig. 16a); a corresponding marginal

FIG. 10. As in Fig. 5a, but BSS of (a) OPT and (b) OPT_AVG forecasts as discussed in the text.
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risk contour encompassed a large region from eastern Texas to

southern Wisconsin eastward to the mid-Atlantic region.

Excessive rainfall observations from the UFVS covered the

entirety of the moderate risk area and large portions of the

lower-probability risk areas (colored circles in Fig. 16a). A

forecast from the FCS1-trained RAW predictor RF model

demonstrates similar orientation to the ERO on this day, but

the probabilities are, generally, lower than those from the

ERO across the southeastern United States (Fig. 16b). In ad-

dition, the slight risk contour extends southwestward into

Louisiana and Arkansas, but it is ultimately not as cohesive as

the ERO slight risk contour, contributing to a poorer BSS for

the day (0.08 for the RF, 0.152 for the ERO). A CONUS-wide

forecast with optimized regional models in the OPT configu-

ration slightly increases the forecast quality (0.0824 BSS) by

refining the extent of the marginal contour and increasing the

maximum probabilities in eastern Tennessee and northern

Alabama and Georgia (Fig. 16c). In contrast, the OPT_AVG

forecast enhances forecast probabilities considerably across

the axis of observed excessive rainfall, and extends the slight

risk northward and southward (Fig. 16d); OPT_AVG BSS

jumps to 0.13 in this case.

Probabilistic excessive rainfall forecasts fromMLmodels have

been evaluated extensively since 2017 at theHydrometeorological

Testbed Flash Flood and Intensive Rainfall (FFaIR) experiment—

a proving ground for new forecast guidance products (Barthold

et al. 2015; Erickson et al. 2019)—in an effort to gauge the

value of ML-based forecast products as operational fore-

casting tools. Participants span the weather enterprise—from

NWS forecast offices to academia—and they evaluate new

NWPmodels and guidance products that will be implemented

in WPC forecast operations. During FFaIR experiments in

2019 and 2020, the three RF model forecast systems dis-

cussed in the previous paragraph were subjectively evalu-

ated by FFaIR participants over four weeks spanning late

June and early July; the FCS1-trained forecasts were eval-

uated in 2019, and the OPT and OPT_AVG forecasts were

compared in the 2020 experiment. In the 2019 experiment, a

global ensemble-based RF system was also in development

(e.g., Schumacher et al. 2021) to produce day-1 excessive

rainfall outlooks (hereafter called the GEFS model), and it

was evaluated alongside the CAM-based RF forecasts as well

as participant generated EROs. Over the four week evaluation

period, participants subjectively ranked each product on a

scale of 1–10, and unsurprisingly, the experimental ERO (i.e.,

produced by the participants) had the highest ranking (6.7),

followed by theGEFS-based (6.07) and the CAM-based EROs

(5.76) (Trojniak and Albright 2019). While objective measures

FIG. 11. As in Fig. 7, but forecast fractions are plotted for (left) OPT and (right) OPT_AVG in the (a),(b) marginal, (c),(d) slight, and

(e),(f) moderate probability categories.
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of skill and resolution showed fairly similar results over the

four-week period between the various EROs, participants

noted ‘‘over forecasting seen in the NSSL ERO across the

Northern Rockies and Northern Plains.’’ The final 2019 FFaIR

report suggested participants ‘‘would reduce the [NSSL WRF]

product by one probabilistic category (e.g., reduce a moderate

to a slight)’’ when digesting the RF forecasts. These subjective

interpretations are consistent with the objective results in this

study, in which a categorical outlook frequency bias (Figs. 7a–

c) and poor skill (Fig. 5a) was noted in the FCS1-trained RF

forecasts.

In the 2020 FFaIR experiment, a new GEFS-based RF

model along with the CAM-based OPT and OPT_AVG

models were provided to participants to guide their experi-

mental ERO, and participants graded each guidance product

individually as in 2019. Again, the GEFS-based forecasts were

deemed subjectively better (6.64 rating) compared to either the

OPT (4.03) or OPT_AVG (5.22) (Trojniak et al. 2020). While

OPT_AVG did outperformOPT in participant evaluation, the

2020 FFaIR report noted ‘‘the NSSL EROs had difficulty

identifying areas of the higher magnitude excessive rainfall

risks’’ (Trojniak et al. 2020), consistent with the under-

forecasting bias at higher probability thresholds noted previ-

ously in both forecast systems (Fig. 13). However, the report

also noted ‘‘the change in training between OPT and OPT_

AVG led to an increase in both the probability of being in

Marginal and a Slight Risk,’’ effectively reducing the under-

forecasting bias in the OPT (Fig. 13). The 2020 report was also

quick to point out ‘‘the [OPT_AVG] product was also able to

identify the risk of excessive rainfall associated with the

Southwest Monsoon,’’ which was also highlighted in the fore-

cast fractions (Figs. 11b,d) and BSS (Fig. 10). In contrast, the

participants found the OPT_AVG forecasts were too often

focused in the Carolinas compared to the operational ERO

(e.g., Fig. 11d). Despite the inferiority of CAM-based RF

forecasts to the GEFS-based versions, FFaIR organizers felt

OPT_AVG ‘‘should be the new configuration the [Colorado

State University] team uses as they continue to refine the

CAM-scale first guess ERO’’ (Trojniak et al. 2020). The results

presented herein, along with FFaIR subjective evaluations,

suggest there exists potential for CAM-based RFs to effec-

tively forecast excessive rainfall and be an operational tool in

the future.

5. Summary and conclusions

RF models are built to predict the occurrence of excessive

rainfall over 24-h periods, analogous to WPC EROs, and

forecast sensitivities to training labels and inputs are eval-

uated in consideration of how best to develop a CAM-based

RF forecast system. NSSL WRF convection-allowing model

forecasts are processed as inputs to the RFs. Because excessive

rainfall is an ill-defined event,multiple precipitation and flooding

datasets are used to define labels for the RFs—including flash

flood reports and 1- and 2-yr ARI exceedances—and separate

models are trained regionally across the CONUS. Separately,

predictor assembly procedures are also considered, one in

which meteorological predictors are selected at raw grid

points over a defined box around training points, and a second

in which all the raw gridpoint predictors are spatially aver-

aged for a particular time and input variable. Training occurs

over an approximately 7-yr period from 9 June 2009 to

31 August 2016, and forecast verification is conducted over

1 January 2017–31 December 2018.

EROs follow a general pattern of skillful forecasts east of the

Rockies and nonskillful forecasts in the western CONUS; fore-

casts are generally worse than climatology in the Intermountain

West where excessive rainfall and flooding events are not fre-

quent and forecasts are issued more often than rainfall events

are observed. RF-based forecast skill generally follows the same

spatial pattern, with a negative/positive skill demarcation along

the Rocky Mountains. However, localized skill differences exist

as a result of different labels. Using the ST4 precipitation anal-

ysis to define ARI exceedances has deleterious effects on

CONUS-wide forecast skill for all but the NE and SE regions, as

the ST4 product identifies far more excessive rainfall events

across the country, which in turn drives the RFs to issue more

frequent forecasts. Aggregate forecast skill is improved by

considering a stricter ARI threshold (i.e., 2 years) as well as

removing ST4 ARIs from the training labels. However, the op-

posite is true of resolution: forecast resolution degrades as

training label definitions become more strict.

CONUS-wide forecast skill improvements are noted when

forecasts are created using regionally skillful models (i.e., the

OPT forecasts), which highlights the importance of regionally

varying labels in training. Moreover, SPT-predictor model

forecasts (OPT_AVG) that also use regionally skillful models

are more accurate and have better resolution than their RAW-

predictor model counterparts. The OPT_AVG forecast im-

proves upon OPT by reducing an underforecast bias and

forecast resolution also improves as a result. It is speculated

that using RAW predictors from a CAM introduces noisy

predictors into RF training, and much of that noise is reduced

when spatially averaging the meteorological information,

FIG. 12. Comparison of fractional coverage of observations for

each probability category [marginal (5%–10%), slight (10%–

20%), and moderate (20%–50%)] between the OPT and OPT_

AVG forecasts, as well as the WPC EROs. Green horizontal lines

depict the lower bound of each probability bin; red horizontal lines

depict the upper bound.
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although a thorough interrogation of this hypothesis is re-

served for future work. In general, when the CAM-based

forecasts incorporate regional skill optimization and spatially

averaged predictors, forecast resolution and skill increases.

Both RF-based forecasts and EROs exhibit seasonal skill,

with the worst skill in the late fall and winter months, and best

skill in the late spring, summer, and early fall months; the latter

follows closely with a seasonal maximum in excessive rainfall

(Stevenson and Schumacher 2014). However, RF-based fore-

cast skill is never statistically better than the EROs over the

verification period, despite following the same skill patterns.

The OPT_AVG model is subjectively the most skillful model

seasonally, as there are only three months where it is statisti-

cally worse than the EROs. An example case study highlights

FIG. 14. ROC curves of RF model forecasts generated with models trained using (a) RAW and (b) SPT pre-

dictors. Separate RF-based forecast models are described by different colors in the legend, and consistent with

definitions provided in the text. Values provided in the bottom right of (a) and (b) are the area under each colored

ROC curve. Dashed blue line denotes no resolution.

FIG. 13. Reliability diagrams of RFmodel forecasts generated withmodels trained using (a) RAWand (b) SPT predictors. SeparateRF-

based forecast models are described by different colors in the legend, and they are consistent with definitions provided in the text. Inset

graph describes the normalized frequencies of forecasts at each probability threshold. Dashed blue and red lines represent perfect reli-

ability and no skill, respectively. Dotted black vertical and horizontal lines denote no resolution (climatology).
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many of the results of the study, including the propensity for

the CAM-based models to have excessive areas of marginal

risk (5% probability) compared to the operational EROs,

and a general increase in probabilities as the models progress

from statically trained to regionally optimized with SPT pre-

dictors (i.e., OPT_AVG). Reports from FFaIR as well as

specific participant feedback and subjective evaluation syn-

thesizes the results further: the CAM-based guidance products

may be useful to operational forecasters in the future as ‘‘first-

guess’’ ERO products, but significant improvements must be

made to the products.

To summarize, CAM-based forecasts of excessive rainfall

presented herein have reasonable resolution, that is they can

distinguish excessive rainfall events from nonevents, and the

resolution is on par with WPC EROs under many configura-

tions. However, forecast probabilities are generally not well

calibrated from models trained with static labels, resulting in

poorer skill relative to the EROs. When regional rainfall cli-

matologies are varied across the CONUS, model forecasts be-

come better calibrated (i.e., OPT and OPT_AVG). The results

presented herein, which suggest superiority of human-based

forecast guidance over statistical guidance in the day-1 time

frame, have been noted by other studies as well (e.g., Hill et al.

2020; Schumacher et al. 2021). Day-1 human-generated fore-

casts are hard to beat when forecasters are utilizing a plethora

of other available information—including many numerical

weather model forecasts as well as observations—to generate

their forecasts. Furthermore, while the focus of this work was

on examining excessive rainfall events, EROs explicitly fore-

cast the exceedance of FFG within 40 km of a point. One

limitation of this work is that FFG is not considered as an input

or label for the RFs, yet RF forecasts are being verified against

FFG within the UFVS. Also, WPC EROs may not be com-

pletely separated from other ML guidance during the verifi-

cation period; operationalized day-2 and day-3ML models

based on inputs from the GEFS have been used at theWPC by

forecasters as first-guess fields since 2017. It is possible thatML

guidance products were used to generated day-2 and day-3

EROs, and that information filtered into the day-1 outlooks;

ERO skill is not independent of other ML guidance and may

FIG. 15.MonthlyBSS for (a) FCS1, (b) FCS2, (c) FC1, and (d) FC2-trainedRAWand SPTmodels, as indicated in

the legends.WPCEROmonthly BSS is also shown in green. (e)OPT and (f) OPT_AVGmonthlyBSS compared to

WPC EROs. Colored shading represents 95% confidence interval obtained from bootstrapping each individual

monthly distribution of forecasts. A colored plus in (a)–(d) delineates when RF skill of the corresponding color is

statistically significantly greater than the other RF forecast; bootstrap samples do not overlap. A colored minus in

(a)–(f) means RF forecast skill of the same color is statistically significantly worse than the WPC ERO skill.
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have benefited from products that are comparable to the

CAM-based products presented (e.g., Trojniak and Albright

2019; Trojniak et al. 2020).

Future work will explore training newRFmodels with labels

defined by the UFVS so that forecasts are more consistent with

WPC verification procedures; this procedure would allow RFs

to additionally learn about instances of FFG exceedance dur-

ing training. However, a shorter training period would need to

be used, and the impact this would have on forecast skill is

unknown. Furthermore, the value of ensemble information

gained by CAM-ensemble inputs, as well as the perceived su-

periority of global ensemble-based RFs (i.e., GEFS RFs) over

theirCAM-based counterparts—notedbyFFaIRparticipants—will

be thoroughly investigated. The most important consideration

moving forward is how useful these RF products will be to

operational forecasters at theWPC. This work is just a first step

in producing an operationally ready product and continued

evaluation at future FFaIR experiments will be critical to ex-

pose researchers and WPC forecasters to the products and

gather subjective interpretations on a case-by-case basis, which

are difficult to tease out of aggregate forecast statistics.
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